T = 294 (2) K

 $R_{\rm int} = 0.063$

 $0.26 \times 0.24 \times 0.20$ mm

14113 measured reflections

2683 independent reflections

1558 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Methyl-N-phenylpiperazine-1carbothioamide

Huan-Mei Guo

Department of Chemistry, Weifang College, Weifang 261061, People's Republic of China

Correspondence e-mail: huanmeiguo@163.com

Received 16 April 2007; accepted 26 April 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.113; data-to-parameter ratio = 17.9.

The title compound, $C_{12}H_{16}N_3S$, was prepared by the reaction of phenyl isothiocyanate with N-methylpiperazine. The crystal structure is stabilized by intermolecular N-H···S hydrogenbonding interactions.

Related literature

For related literature, see: Ballabeni et al. (1999); Guzmán et al. (1991); Ramnathan et al. (1996).

Experimental

Crystal data

 $C_{12}H_{17}N_3S$ $M_r = 235.35$ Orthorhombic, Pbca a = 12.615 (3) Å

b = 9.564 (3) Å c = 21.792 (6) Å V = 2629.4 (12) Å³ Z = 8

Mo $K\alpha$ radiation $\mu = 0.23 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{\rm min}=0.944,\;T_{\rm max}=0.956$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ H atoms treated by a mixture of $wR(F^2) = 0.113$ independent and constrained S = 1.00refinement $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ 2683 reflections $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$ 150 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1 - H1 \cdots S1^i$	0.84 (3)	2.64 (3)	3.403 (2)	152 (2)
Symmetry code: (i)	$-x + \frac{1}{2}, y - \frac{1}{2}, z.$			

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2276).

References

Ballabeni, M., Ballini, R., Bigi, F., Maggi, R., Parrini, M., Predieri, G. & Sartori, G. (1999). J. Org. Chem. 64, 1029-1032.

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Guzmán, J. F. B., Rodríguez, S. G. & Fernández-Bolaños, J. (1991). Carbohydr. Res. 210, 125-143.

Ramnathan, A., Sivakumar, K., Srinivasan, N., Janarthanan, N., Ramadas, K. & Fun, H.-K. (1996). Acta Cryst. C52, 1285-1288.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o2781 [doi:10.1107/S1600536807020855]

4-Methyl-N-phenylpiperazine-1-carbothioamide

H.-M. Guo

Comment

Thiourea derivatives have been used extensively as organical intermediate in the field of high polymer chemistry (Ballabeni *et al.*, 1999). As part of our search for new compounds we synthesized the title compound (I), and describe its structure here.

Bond lengths and angles in (I) are normal. The C1—S1 distance of 1.688 (2) Å is longer than the distance of 1.700 Å reported by Ramnathan *et al.* (1996). The C1—N2 distance [1.339 (2) Å] is longer than the reported distance [1.339 Å] (Guzmán *et al.*, 1991). The crystal structure of (I) is stabilized by intermolecular N—H···S hydrogen bonding interactions.

Experimental

A mixture of the phenyl isothiocyanate (0.1 mol), and N-methypiperazine (0.1 mol) was stirred in refluxing ethanol (30 ml) for 5 h to afford the title compound (0.085 mol, yield 85%). Single crystals suitable of (I) for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

The H atom bonded to the N atom was found from a difference Fourier map and refined freely. The other H atoms were fixed geometrically and allowed to ride on their attached atoms, with C-H = 0.93 - 0.97 Å, and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

4-Methyl-N-phenylpiperazine-1-carbothioamide

Crystal data $C_{12}H_{17}N_3S$ $M_r = 235.35$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 12.615 (3) Å b = 9.564 (3) Å c = 21.792 (6) Å

 $F_{000} = 1008$ $D_x = 1.189 \text{ Mg m}^{-3}$ Mo K\appa radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2706 reflections $\theta = 2.5-22.9^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 294 (2) K

$V = 2629.4 (12) \text{ Å}^3$	
Z = 8	

Data collection

Bruker SMART CCD area-detector diffractometer	2683 independent reflections
Radiation source: fine-focus sealed tube	1558 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.063$
T = 294(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
φ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -15 \rightarrow 15$
$T_{\min} = 0.944, \ T_{\max} = 0.956$	$k = -11 \rightarrow 11$
14113 measured reflections	$l = -12 \rightarrow 27$

Block, colourless $0.26 \times 0.24 \times 0.20$ mm

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.113$ S = 1.00

2683 reflections

150 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.208P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.19 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.18 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997), Fc^{*}=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0063 (8)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.36106 (5)	0.99131 (5)	0.40936 (3)	0.0514 (2)
N1	0.28317 (14)	0.76356 (17)	0.35338 (9)	0.0524 (5)
H1	0.2645 (18)	0.680 (3)	0.3598 (11)	0.079*
N3	0.61274 (14)	0.5946 (2)	0.44451 (8)	0.0578 (5)
C1	0.35271 (15)	0.81840 (19)	0.39467 (9)	0.0398 (5)
N2	0.41289 (14)	0.72436 (17)	0.42397 (8)	0.0513 (5)
C2	0.43330 (17)	0.5809 (2)	0.40281 (12)	0.0640 (7)
H2A	0.3932	0.5626	0.3657	0.077*
H2B	0.4110	0.5147	0.4339	0.077*
C3	0.55023 (19)	0.5640 (3)	0.39033 (11)	0.0649 (7)
H3A	0.5642	0.4689	0.3772	0.078*
H3B	0.5710	0.6264	0.3574	0.078*
C5	0.59229 (19)	0.7363 (2)	0.46428 (11)	0.0610 (7)
H5A	0.6144	0.8008	0.4324	0.073*
H5B	0.6336	0.7561	0.5008	0.073*
C6	0.47721 (17)	0.7581 (2)	0.47785 (10)	0.0563 (6)
H6A	0.4562	0.6991	0.5120	0.068*
H6B	0.4653	0.8547	0.4895	0.068*
C7	0.7257 (2)	0.5730 (4)	0.43281 (13)	0.1001 (10)
H7A	0.7372	0.4786	0.4194	0.150*
H7B	0.7650	0.5895	0.4698	0.150*
H7C	0.7490	0.6367	0.4016	0.150*
C8	0.22016 (16)	0.8339 (2)	0.30953 (10)	0.0432 (5)
C9	0.25884 (19)	0.9421 (2)	0.27394 (10)	0.0520 (6)
Н9	0.3279	0.9738	0.2793	0.062*
C10	0.1938 (2)	1.0030 (3)	0.23032 (11)	0.0689 (7)
H10	0.2191	1.0776	0.2072	0.083*
C11	0.0929 (3)	0.9551 (3)	0.22057 (12)	0.0768 (8)
H11	0.0503	0.9964	0.1909	0.092*
C12	0.0551 (2)	0.8459 (3)	0.25482 (12)	0.0694 (7)
H12	-0.0128	0.8117	0.2479	0.083*
C13	0.11814 (17)	0.7868 (2)	0.29968 (11)	0.0549 (6)
H13	0.0915	0.7143	0.3236	0.066*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1	0.0658 (4)	0.0334 (3)	0.0552 (4)	0.0038 (2)	-0.0001 (3)	-0.0056 (3)
N1	0.0498 (11)	0.0314 (9)	0.0759 (14)	-0.0014 (8)	-0.0252 (10)	0.0078 (10)
N3	0.0471 (12)	0.0745 (14)	0.0518 (12)	0.0137 (9)	-0.0161 (9)	-0.0033 (10)
C1	0.0358 (11)	0.0343 (10)	0.0492 (13)	0.0015 (9)	-0.0011 (10)	0.0026 (9)
N2	0.0522 (11)	0.0359 (9)	0.0659 (13)	0.0059 (8)	-0.0233 (10)	-0.0039 (9)
C2	0.0610 (16)	0.0316 (12)	0.099 (2)	0.0065 (10)	-0.0346 (14)	-0.0050 (12)
C3	0.0723 (17)	0.0549 (14)	0.0675 (17)	0.0161 (13)	-0.0263 (14)	-0.0118 (13)

supplementary materials

C5	0.0598 (16)	0.0717 (16)	0.0514 (15)	-0.0095 (12)	-0.0195 (12)	-0.0046 (13)
C6	0.0581 (16)	0.0569 (14)	0.0539 (14)	0.0070 (11)	-0.0159 (12)	-0.0036 (11)
C7	0.0569 (19)	0.165 (3)	0.078 (2)	0.0280 (19)	-0.0138 (15)	-0.020 (2)
C8	0.0415 (13)	0.0350 (11)	0.0531 (13)	0.0123 (9)	-0.0082 (10)	-0.0058 (10)
C9	0.0538 (14)	0.0532 (13)	0.0491 (14)	0.0089 (11)	0.0043 (12)	-0.0009 (12)
C10	0.089 (2)	0.0688 (16)	0.0495 (15)	0.0142 (15)	0.0017 (14)	0.0138 (13)
C11	0.086 (2)	0.0806 (19)	0.0639 (18)	0.0311 (17)	-0.0278 (16)	0.0033 (15)
C12	0.0587 (16)	0.0634 (16)	0.0861 (19)	0.0130 (13)	-0.0292 (15)	-0.0067 (16)
C13	0.0508 (15)	0.0406 (12)	0.0733 (17)	0.0069 (10)	-0.0160 (12)	-0.0010 (11)
Geometric paran	neters (Å, °)					
S1-C1		1 6878 (19)	C5-	_H5B	0.97	00
N1C1		1.362(2)	C6-	_H6A	0.97	00
N1—C8		1.302(2) 1.414(3)	C6-	_H6B	0.97	00
N1—C8		0.84(3)	C0-	-110D H7A	0.97	00
N1—111 N2 C5		1.446(3)	C7-	-117A	0.90	00
$N_3 = C_3$		1.440(3)	C7=		0.90	00
N3—C3		1.430(3)	C/-	—П/С С12	0.90	0.0
N3-C7		1.402 (3)	C8-	-013	1.38	0(3)
CI—N2		1.539 (2)	C8-	-C9	1.38	2 (3)
N2		1.403 (3)	C9-	-010	1.38	4 (3)
N2-C2		1.4/0 (3)	C9-	-H9	0.93	00
C2-C3		1.509 (3)	CIO		1.36	9 (4)
C2—H2A		0.9700	CIU	H10	0.93	00
C2—H2B		0.9700	CII		1.36	9 (4)
C3—H3A		0.9700	CII	—HII	0.93	00
C3—H3B		0.9700	C12		1.38	1 (3)
C5—C6		1.496 (3)	C12	—H12	0.93	00
С5—Н5А		0.9700	C13	—H13	0.93	00
C1—N1—C8		128.72 (17)	N2-	C6C5	110.4	41 (19)
C1—N1—H1		115.7 (17)	N2-	—С6—Н6А	109.	6
C8—N1—H1		113.9 (17)	C5-	—С6—Н6А	109.	6
C5—N3—C3		109.57 (18)	N2-	—С6—Н6В	109.	6
C5—N3—C7		111.0 (2)	C5-	—С6—Н6В	109.	6
C3—N3—C7		111.1 (2)	H6A	А—С6—Н6В	108.	1
N2-C1-N1		114.94 (17)	N3-	—С7—Н7А	109.	5
N2-C1-S1		122.16 (15)	N3-	—С7—Н7В	109.	5
N1-C1-S1		122.89 (14)	H7A	А—С7—Н7В	109.	5
C1—N2—C6		123.29 (17)	N3-	—С7—Н7С	109.	5
C1—N2—C2		125.20 (18)	H7A	А—С7—Н7С	109.	5
C6—N2—C2		111.13 (16)	H7E	3—С7—Н7С	109.	5
N2—C2—C3		109.16 (18)	C13	—С8—С9	119.	1 (2)
N2—C2—H2A		109.8	C13		118.	29 (19)
С3—С2—Н2А		109.8	С9-		122.	50 (19)
N2—C2—H2B		109.8	C8-	C9C10	119.4	4 (2)
С3—С2—Н2В		109.8	C8-	—С9—Н9	120.	3
H2A—C2—H2B		108.3	C10	—С9—Н9	120.	3
N3—C3—C2		111.3 (2)	C11	C10C9	121.	1 (3)
N3—C3—H3A		109.4	C11	—С10—Н10	119.	4

С2—С3—НЗА	109.4	C9—C10—H10		119.4
N3—C3—H3B	109.4	C12-C11-C10		119.6 (2)
С2—С3—Н3В	109.4	C12—C11—H11		120.2
НЗА—СЗ—НЗВ	108.0	C10-C11-H11		120.2
N3—C5—C6	111.28 (19)	C11—C12—C13		119.8 (2)
N3—C5—H5A	109.4	С11—С12—Н12		120.1
С6—С5—Н5А	109.4	С13—С12—Н12		120.1
N3—C5—H5B	109.4	C8—C13—C12		120.9 (2)
С6—С5—Н5В	109.4	C8—C13—H13		119.6
H5A—C5—H5B	108.0	С12—С13—Н13		119.6
C8—N1—C1—N2	-170.3 (2)	C1—N2—C6—C5		-117.2 (2)
C8—N1—C1—S1	11.1 (3)	C2—N2—C6—C5		56.1 (2)
N1—C1—N2—C6	-167.85 (19)	N3—C5—C6—N2		-57.2 (2)
S1—C1—N2—C6	10.8 (3)	C1—N1—C8—C13		-140.8 (2)
N1-C1-N2-C2	19.8 (3)	C1—N1—C8—C9		43.0 (3)
S1—C1—N2—C2	-161.54 (17)	C13—C8—C9—C10		1.5 (3)
C1—N2—C2—C3	117.1 (2)	N1-C8-C9-C10		177.64 (19)
C6—N2—C2—C3	-56.1 (3)	C8—C9—C10—C11		-1.9 (3)
C5—N3—C3—C2	-59.1 (3)	C9—C10—C11—C12		0.5 (4)
C7—N3—C3—C2	177.9 (2)	C10-C11-C12-C13		1.3 (4)
N2—C2—C3—N3	57.9 (3)	C9—C8—C13—C12		0.3 (3)
C3—N3—C5—C6	58.4 (3)	N1-C8-C13-C12		-176.03 (19)
C7—N3—C5—C6	-178.6 (2)	C11—C12—C13—C8		-1.7 (4)
Hydrogen-bond geometry (Å, °)				
DH…4	Д—Н	H <i>A</i>	$D \cdots A$	$D - H \cdots A$

$D = \Pi^{\dots} A$	$D = \Pi$	$\Pi^{\dots}A$	$D^{\dots A}$	$D - \Pi^{m}$
N1—H1···S1 ⁱ	0.84 (3)	2.64 (3)	3.403 (2)	152 (2)
Symmetry codes: (i) $-x+1/2$, $y-1/2$, z.				

